Absolutely undecidable sets

Rupert Holzl

Universitit der Bundeswehr Miinchen

Joint work with Laurent Bienvenu and Adam R. Day

hoelzl.fr 1/25

Reminder: Turing degrees

Turing machines are a theoretical computation model that can
simulate any other classical computation model.

hoelzl.fr 3/25

Turing machines are a theoretical computation model that can
simulate any other classical computation model.
Such a machine is in one of finitely many internal states g.

hoelzl.fr 3/25

Turing machines are a theoretical computation model that can
simulate any other classical computation model.

Such a machine is in one of finitely many internal states g.

It has reading and writing heads that move around on one or
more infinite tapes and read and write symbols.

hoelzl.fr 3/25

Turing machines are a theoretical computation model that can
simulate any other classical computation model.

Such a machine is in one of finitely many internal states g.

It has reading and writing heads that move around on one or
more infinite tapes and read and write symbols.

Its internal state and last read symbol determine its next actions:

hoelzl.fr 3/25

Turing machines are a theoretical computation model that can
simulate any other classical computation model.
Such a machine is in one of finitely many internal states g.
It has reading and writing heads that move around on one or
more infinite tapes and read and write symbols.
Its internal state and last read symbol determine its next actions:
m the symbol to write in the current cell and

hoelzl.fr 3/25

Turing machines are a theoretical computation model that can
simulate any other classical computation model.

Such a machine is in one of finitely many internal states g.

It has reading and writing heads that move around on one or
more infinite tapes and read and write symbols.

Its internal state and last read symbol determine its next actions:

m the symbol to write in the current cell and
m the next movement.

hoelzl.fr 3/25

Turing machines are a theoretical computation model that can
simulate any other classical computation model.
Such a machine is in one of finitely many internal states g.
It has reading and writing heads that move around on one or
more infinite tapes and read and write symbols.
Its internal state and last read symbol determine its next actions:
m the symbol to write in the current cell and
m the next movement.

The instructions for this are given as a finite list, a programme.

hoelzl.fr 3/25

Turing machine computations

Turing machines can compute sets:

m Designate one internal state as accepting, and one as rejecting.

» Definition. A set A C N is computably enumerable if there is a
Turing machine M that terminates in the accepting state iff 7 € A.

m Definition. A set A C N is computable if there is a Turing
machine M that terminates in the accepting state if » € A and
in the rejecting state otherwise.

Turing machines can compute functions:

m Designate one tape as input tape and one as output tape.

m Initially, the input tape contains a binary word o as input.

m If the machine terminates after it has produced a binary word =
on the output tape, then we write M(o) = 7.

m Definition. A partial function [is partial computable if there is a
Turing machine M with M(o) =f (o) for all o € dom(f’).

m Via binary encoding we can have computable /: N — N.

hoelzl.fr 4/25

Turing functionals

Intuition. A Turing functional computably converts one infinite
binary sequence into another.

Definition. A Turing functional ®: 2 — 2% is a (partial)
function for which there exists a Turing machine M such that

0,0’ €dom(M) A 0 <0’ = M(oc)<XM(c")

For A € 2 where [M(A | n)] — oo , let ®(A) = lim M(A | n).
Otherwise ®(A) is undefined. e
We write & for ®(A).

In other words: A Turing functional is a function transforming
infinite sequences into infinite sequences. It is induced by an
underlying Turing machine that operates on finite sequences.

hoelzl.fr 5/25

Turing degrees

Definition. A is Turing reducible to B, written as A < B, if
there is a Turing functional ® such that 4 = ®5.

Definition. A is Turing equivalent to B, written as A = B, if
both A <; Band B<, A.

Definition. The Tiuring degrees are the equivalence classes
induced by =7.
Intuition. All sets in a Turing degree contain the same

information, but represented differently. The representations
can be transformed into each other using a Turing functional.

Definition. A tt-functional is a total Turing functional.

hoelzl.fr 6/25

Motivation

hoelzl.fr 8/25

hoelzl.fr 8/25

‘

| \
.
\ \
\ \
\ \
\\ “‘
\ 1

\ |

\ |

\J

hoelzLfr 825

‘

| \
o
\ \
\ \
\ \
\\ “‘
\ 1

\ |
\ |

\J

hoelzLfr 8/25

Definition. A set A is bi-immune if neither A nor its

complement contain an infinite computably enumerable set.

hoelzl.fr 8/25

A—1—1—0H1qoHORtIHOR1—n7

Another way of seeing bi-immunity is to say that a partial
computable function ¢ that “predicts” A(») for infinitely many 7
must make a mistake somewhere.

hoelzl.fr 9/25

A—1—1—0H1qoHORtIHOR1—n7

¢ o]

Another way of seeing bi-immunity is to say that a partial
computable function ¢ that “predicts” A(») for infinitely many 7
must make a mistake somewhere.

hoelzl.fr 9/25

A—1—1—70 0
¢ o] [o]
Another way of seeing bi-immunity is to say that a partial

computable function ¢ that “predicts” A(») for infinitely many 7
must make a mistake somewhere.

0 1o0H1—>n

hoelzl.fr 9/25

A—1—1—0 OO0 101 —n
¢ o] [[

Another way of seeing bi-immunity is to say that a partial
computable function ¢ that “predicts” A(») for infinitely many 7
must make a mistake somewhere.

hoelzl.fr 9/25

A—1—-1—-0H1—O0HO0H1OH1—>n

ol [[

Another way of seeing bi-immunity is to say that a partial
computable function ¢ that “predicts” A(») for infinitely many 7
must make a mistake somewhere.

hoelzl.fr 9/25

A—1—-1—-0H1—O0HO0H1OH1—>n

o Ll [L] M

Another way of seeing bi-immunity is to say that a partial
computable function ¢ that “predicts” A(») for infinitely many 7
must make a mistake somewhere.

hoelzl.fr 9/25

A—1-1qHoHt1-HoHoHtIHoH1—n
o Ll [[A
Another way of seeing bi-immunity is to say that a partial

computable function ¢ that “predicts” A(») for infinitely many 7
must make a mistake somewhere.

Theorem (Jockusch). There exists a non-computable set A such
that there is no bi-immune set B that is Turing-equivalent to A.

Intuition. Some information just cannot be represented in a
bi-immune way.

hoelzl.fr 9/25

Weakening bi-immunity

The notion of bi-immunity can be weakened by replacing

<« b

@’s that make infinitely many predictions” by a smaller class.
Definition. The (upper) density of D C N is

(D) = limup PO L= 1}

n— 00 n

hoelzl.fr 10/25

Absolute undecidability

A—1—1 401140010 1—>n

Definition (Myasnikov, Rybalov). A is absolutely undecidable if
there is no partial computable function ¢: N — {0, 1} with

p(dom(¢)) > 0and ¢(n) = A(n) for n € dom(y).

hoelzl.fr 11/25

Absolute undecidability

A—1—1 401140010 1—>n

¢ o]

Definition (Myasnikov, Rybalov). A is absolutely undecidable if
there is no partial computable function ¢: N — {0, 1} with

p(dom(¢)) > 0and ¢(n) = A(n) for n € dom(y).

hoelzl.fr 11/25

Absolute undecidability

A—=1-1H

0
¢ o]

o]

Definition (Myasnikov, Rybalov). A is absolutely undecidable if
there is no partial computable function ¢: N — {0, 1} with

p(dom(¢)) > 0and ¢(n) = A(n) for n € dom(y).

hoelzl.fr 11/25

Absolute undecidability

A—=1-1H

0
¢ o]

O 1—=>n

EXREY

Definition (Myasnikov, Rybalov). A is absolutely undecidable if
there is no partial computable function ¢: N — {0, 1} with

p(dom(¢)) > 0and ¢(n) = A(n) for n € dom(y).

hoelzl.fr 11/25

Absolute undecidability

A—1-1-Ho0H

99]]]]

1_

0

Definition (Myasnikov, Rybalov). A is absolutely undecidable if
there is no partial computable function ¢: N — {0, 1} with

p(dom(¢)) > 0and ¢(n)

= A(n) for n € dom(gp).

hoelzl.fr 11/25

Absolute undecidability

A—=1-1Ho0

1_

0

—10

so]]]]@

Definition (Myasnikov, Rybalov). A is absolutely undecidable if
there is no partial computable function ¢: N — {0, 1} with

p(dom(¢)) > 0and ¢(n)

= A(n) for n € dom(gp).

hoelzl.fr 11/25

Absolute undecidability

A—1—-1Ho0H1HoHoOHt1HoH 1 —n
¢]E o] E o
f f 1 1

many predictions in the limit, that is, p(dom(¢)) > 0.

Definition (Myasnikov, Rybalov). A is absolutely undecidable if
there is no partial computable function ¢: N — {0, 1} with
p(dom(¢)) > 0and ¢(n) = A(n) for n € dom(y).

hoelzl.fr 11/25

Absolute undecidability

A—1—1 401140010 1—>n

go]EEE@
S

many predictions in the limit, that is, p(dom(¢)) > 0.

Definition (Myasnikov, Rybalov). A is absolutely undecidable if
there is no partial computable function ¢: N — {0, 1} with
p(dom(¢)) > 0and ¢(n) = A(n) for n € dom(y).

Intuition. Like bi-immunity, except that only those ¢’s that
make “many” predictions are required to make mistakes.

hoelzl.fr 11/25

Absolute undecidability

A—1—1 401140010 1—>n

o [l [[N
e e

many predictions in the limit, that is, p(dom(¢)) > 0.

Definition (Myasnikov, Rybalov). A is absolutely undecidable if
there is no partial computable function ¢: N — {0, 1} with

p(dom(¢)) > 0and ¢(n) = A(n) for n € dom(y).

Intuition. Like bi-immunity, except that only those ¢’s that
make “many” predictions are required to make mistakes.

Intuition. There is no Turing machine generating
non-negligible positive or negative information about A.

hoelzl.fr 11/25

In the Turing degrees

Theorem (Jockusch), restated. There exists a non-computable
Turing degree such that none of its elements are bi-immune.

Question (Downey, Jockusch, Schupp). Does there exist a
non-computable Turing degree such that none of its elements are
absolutely undecidable?

hoelzl.fr 12/25

In the Turing degrees

Theorem (Jockusch), restated. There exists a non-computable
Turing degree such that none of its elements are bi-immune.

Question (Downey, Jockusch, Schupp). Does there exist a
non-computable Turing degree such that none of its elements are
absolutely undecidable?

We will show that the answer is “no” — bi-immunity and
absolute undecidability behave differently in this regard.

hoelzl.fr 12/25

The main result

Theorem. There exists a tt-functional I such that for
non-computable A, T4 is absolutely undecidable and T4 = A.

Corollary. There is an absolutely undecidable set in every
non-computable Turing degree.

hoelzl.fr 14/25

General proof idea

The functional T will code any set A in way that is so redundant,
that from any non-negligible fraction of that code T the whole
set A can be recovered.

Assume for contradiction that T is 7ot absolutely undecidable.
Then there is a ¢ as above.

Since ¢ is partial computable, we could then use ¢ to generate
such a non-negligible fraction, and then recover A.

Then A would be computable, contradiction.
So T4 must have been absolutely undecidable. O

hoelzl.fr 15/25

Walsh-Hadamard codes

Forx,y € {0,1}" let x @y =>7" | x;5; mod 2.
Then the Walsh-Hadamard code of a word x € {0, 1}” is

WH(x):=x®0" o x®0" 1 0 x®@0" 210 o ... 0 x®17,

where o denotes concatenation.

hoelzl.fr 16/25

List decoding

B Hamming distance. Define d(x,y) := #{i | x(i) # y(i)}/n. The
distance of a coding scheme E is min{d(E(x), E(y)) | x # y}.

List decoding

(objects in drawing are higher-dimensional than they appear)

B Hamming distance. Define d(x,y) := #{l 75 y(2)}/n. The
distance of a coding scheme E is min{d(E(x), E(y)) | x # y}.

hoelzl.fr 17/25

List decoding

(objects in drawing are higher-dimensional than they appear)

B Hamming distance. Define d(x,y) := #{l 75 y(2)}/n. The
distance of a coding scheme E is min{d(E(x), E(y)) | x # y}.

Lemma. WH is an error correcting code of dlstance 1/2.

hoelzl.fr 17/25

List decoding

.
/ 4
(objects in drawing are higher-dimensional than they appear)

B Hamming distance. Define d(x,y) := #{l 75 y(2)}/n. The
distance of a coding scheme E is min{d(E(x), E(y)) | x # y}.

Lemma. WH is an error correcting code of dlstance 1/2.

hoelzl.fr 17/25

List decoding

.
/ 4
(objects in drawing are higher-dimensional than they appear)

B Hamming distance. Define d(x,y) := #{l 75 y(2)}/n. The
distance of a coding scheme E is min{d(E(x), E(y)) | x # y}.

Lemma. WH is an error correcting code of dlstance 1/2.

hoelzl.fr 17/25

List decoding

1/2—8/

.
/ 4
(objects in drawing are higher-dimensional than they appear)

B Hamming distance. Define d(x,y) := #{l 75 y(2)}/n. The
distance of a coding scheme E is min{d(E(x), E(y)) | x # y}.

Lemma. WH is an error correcting code of dlstance 1/2.

hoelzl.fr 17/25

List decoding

4

/i
(objects in drawing are higher-dimensional than they appear)
B Hamming distance. Define d(x,y) := #{l 75 y(2)}/n. The
distance of a coding scheme E is min{d(E(x), E(y)) | x # y}.

Lemma. WH is an error correcting code of dlstance 1/2.

]ohnson bound. If £ is an error correcting code of distance
larger or equal to 1/2, then for all x and & >0, there are at most
[=1/28? elements y,...,y; with d(x, E(y,)) < 1/2— & for all i.

hoelzl.fr 17/25

A subtlety

We are not quite in the setting of error-correcting codes.
In that field, usually a code gets damaged by switching bits.
Here, bits are missing; say, a 1 — 28 fraction of them.

That is, the 28 fraction of non-missing bits is correct.
Then the error-correcting code approach can still be used:

m Fill the empty positions with 0’s to get a codeword z,
and with 1’s to get a codeword z,.

One of them must be correct on 1/2+ & of its bits.

Use list decoding on both z, and z,.

Get two lists of size [=1/282.

Merge them.

hoelzl.fr 18/25

The coding procedure

For input A, we construct I! block by block.
An initial segment A [7 is coded by a string of length 2”.
Namely, 4 = WH(A [1) o WH(A 2) o WH(A |3)...

hoelzl.fr 19/25

The recovery procedure

Now assume we know a positive upper density fraction 28 of the
bits of 4. W.Lo.g. choose 8 € Q. Let I, = {27,...,2"*! —1}.

Lemma. If a set D C N has p(D) > 28 > 0, then for infinitely
many 7, the upper density of D inside [, is at least S

Since D is c.e. and & € Q, the set of such 7 is c.e. and therefore
contains a computable set {ny <n; <n,<...}.

Let I be a version of I where missing bits are filled with 0.
Let ! be a version of I where missing bits are filled with 1’s.

For all 4, let asi =T [7, and Uii =T I,
Apply list decoding to these two corrupted codewords.

Merge the resulting lists, as discussed above.

hoelzl.fr 20/25

The recovery procedure

3
4

We get a computable tree whose paths are candidates for A.
Johnson bound = width of tree is bounded by 2/ =1/52.

hoelzl.fr 21/25

The recovery procedure

We get a computable tree whose paths are candidates for A.
Johnson bound = width of tree is bounded by 2/ =1/52.

hoelzl.fr 21/25

The recovery procedure

We get a computable tree whose paths are candidates for A.
Johnson bound = width of tree is bounded by 2/ =1/52.

hoelzl.fr 21/25

The recovery procedure

We get a computable tree whose paths are candidates for A.
Johnson bound = width of tree is bounded by 2/ =1/52.
Hardcode a node 7 where A becomes isolated in that tree. [

hoelzl.fr 21/25

The limits

Non-uniformity

Theorem. There is no tt-functional T and finite set of Turing
functionals W,,W,, ..., ¥, with the property that for any A, for
any partial function ¢: N — {0, 1} with p(dom(¢)) > 1/3, if
! extends ¢, then A € {¥;(p) |1 < k).

That is: There is no coding that will work with a finite number
of decoding procedures. In this sense our main result is optimal;
the “infinite non-uniformity” for decoding is necessary.

hoelzl.fr 23/25

Sublinear density

Let xp: n— |DN{0,...,n—1}|.

Theorem. There is a non-computable set X such that for all
Y <4 X, and all computable functions 5 € o(n), there exists a
partial computable function ¢ such that

m Y(n)=¢(n) for all » € dom(¢p), and
B Xdom(p) &o(h).
Intuition. There is a non-computable Turing degree such that
for every set in it there is a correct prediction procedure making
sublinearly, but arbitrarily close to linearly, many predictions.

That is: We really need positive density for the main result.

hoelzl.fr 24/25

Thank you for your attention.

Journal of Symbolic Logic, Volume 78, Issue 4, 2013

hoelzl.fr 25/25

	Title
	Title

	Reminder: Turing degrees
	Motivation
	The main result
	The limits

