Absolutely undecidable sets

Rupert Hölzl

Universität der Bundeswehr München

Joint work with Laurent Bienvenu and Adam R. Day

Reminder: Turing degrees

■ Turing machines are a theoretical computation model that can simulate any other classical computation model.

 \overline{q}

- Turing machines are a theoretical computation model that can simulate any other classical computation model.
- **2** Such a machine is in one of *finitely* many internal states q.

- Turing machines are a theoretical computation model that can simulate any other classical computation model.
- 2 Such a machine is in one of *finitely* many internal states q.
- It has reading and writing heads that move around on one or more *infinite* tapes and read and write symbols.

- Turing machines are a theoretical computation model that can simulate any other classical computation model.
- 2 Such a machine is in one of *finitely* many internal states q.
- It has reading and writing heads that move around on one or more *infinite* tapes and read and write symbols.
- 4 Its internal state and last read symbol determine its next actions:

- Turing machines are a theoretical computation model that can simulate any other classical computation model.
- 2 Such a machine is in one of *finitely* many internal states q.
- It has reading and writing heads that move around on one or more *infinite* tapes and read and write symbols.
- 4 Its internal state and last read symbol determine its next actions:
 - the symbol to write in the current cell and

- Turing machines are a theoretical computation model that can simulate any other classical computation model.
- 2 Such a machine is in one of *finitely* many internal states q.
- It has reading and writing heads that move around on one or more *infinite* tapes and read and write symbols.
- Its internal state and last read symbol determine its next actions:
 - the symbol to write in the current cell and
 - the next movement.

- Turing machines are a theoretical computation model that can simulate any other classical computation model.
- 2 Such a machine is in one of *finitely* many internal states q.
- It has reading and writing heads that move around on one or more *infinite* tapes and read and write symbols.
- Its internal state and last read symbol determine its next actions:
 - the symbol to write in the current cell and
 - the next movement.
- **5** The instructions for this are given as a *finite* list, a *programme*.

hoelzl.fr 3/25

Turing machine computations

- 1 Turing machines can compute sets:
 - Designate one internal state as *accepting*, and one as *rejecting*.
 - **Definition.** A set $A \subseteq \mathbb{N}$ is *computably enumerable* if there is a Turing machine M that terminates in the accepting state iff $n \in A$.
 - **Definition.** A set $A \subseteq \mathbb{N}$ is *computable* if there is a Turing machine M that terminates in the accepting state if $n \in A$ and in the rejecting state otherwise.
- 2 Turing machines can compute functions:
 - Designate one tape as *input tape* and one as *output tape*.
 - Initially, the input tape contains a binary word σ as input.
 - If the machine terminates after it has produced a binary word τ on the output tape, then we write $M(\sigma) = \tau$.
 - **Definition.** A partial function f is *partial computable* if there is a Turing machine M with $M(\sigma) = f(\sigma)$ for all $\sigma \in \text{dom}(f)$.
 - Via binary encoding we can have computable $f: \mathbb{N} \to \mathbb{N}$.

Turing functionals

- **Intuition.** A *Turing functional* computably converts one *infinite* binary sequence into another.
- **2 Definition.** A *Turing functional* $\Phi: 2^{\omega} \to 2^{\omega}$ is a (partial) function for which there exists a Turing machine M such that

$$\sigma, \sigma' \in \mathsf{dom}(M) \ \land \ \sigma \preceq \sigma' \implies M(\sigma) \preceq M(\sigma')$$

For $A \in 2^{\omega}$ where $|M(A \upharpoonright n)| \to \infty$, let $\Phi(A) = \lim_{n \to \infty} M(A \upharpoonright n)$. Otherwise $\Phi(A)$ is undefined.

- **3** We write Φ^A for $\Phi(A)$.
- **In other words:** A Turing functional is a function transforming *infinite* sequences into *infinite* sequences. It is induced by an underlying Turing machine that operates on *finite* sequences.

Turing degrees

- **Definition.** *A* is *Turing reducible* to *B*, written as $A \leq_T B$, if there is a Turing functional Φ such that $A = \Phi^B$.
- **2 Definition.** *A* is *Turing equivalent* to *B*, written as $A \equiv_T B$, if both $A \leq_T B$ and $B \leq_T A$.
- **3 Definition.** The *Turing degrees* are the equivalence classes induced by \equiv_T .
- **Intuition.** All sets in a Turing degree contain the same information, but represented differently. The representations can be transformed into each other using a Turing functional.
- **Definition.** A tt-functional is a total Turing functional.

■ **Definition.** A set *A* is *bi-immune* if neither *A* nor its complement contain an infinite computably enumerable set.

1 Another way of seeing bi-immunity is to say that a partial computable function φ that "predicts" A(n) for infinitely many n must make a mistake somewhere.

■ Another way of seeing bi-immunity is to say that a partial computable function φ that "predicts" A(n) for infinitely many n must make a mistake somewhere.

1 Another way of seeing bi-immunity is to say that a partial computable function φ that "predicts" A(n) for infinitely many n must make a mistake somewhere.

1 Another way of seeing bi-immunity is to say that a partial computable function φ that "predicts" A(n) for infinitely many n must make a mistake somewhere.

■ Another way of seeing bi-immunity is to say that a partial computable function φ that "predicts" A(n) for infinitely many n must make a mistake somewhere.

1 Another way of seeing bi-immunity is to say that a partial computable function φ that "predicts" A(n) for infinitely many n must make a mistake somewhere.

- Another way of seeing bi-immunity is to say that a partial computable function φ that "predicts" A(n) for infinitely many n must make a mistake somewhere.
- **Theorem (Jockusch).** There exists a non-computable set *A* such that there is no bi-immune set *B* that is Turing-equivalent to *A*.
- **Intuition.** Some information just cannot be represented in a bi-immune way.

Weakening bi-immunity

- The notion of bi-immunity can be weakened by replacing "φ's that make infinitely many predictions" by a smaller class.
- **2 Definition.** The *(upper) density of* $D \subseteq \mathbb{N}$ *is*

$$\rho(D) := \limsup_{n \to \infty} \frac{|D \cap \{0, \dots, n-1\}|}{n}.$$

- **Definition (Myasnikov, Rybalov).** *A* is absolutely undecidable if there is no partial computable function $\varphi : \mathbb{N} \to \{0, 1\}$ with $\rho(\text{dom}(\varphi)) > 0$ and $\varphi(n) = A(n)$ for $n \in \text{dom}(\varphi)$.
- **2 Intuition.** Like bi-immunity, except that only those φ 's that make "many" predictions are required to make mistakes.

- **■ Definition (Myasnikov, Rybalov).** *A* is absolutely undecidable if there is no partial computable function $\varphi : \mathbb{N} \to \{0,1\}$ with $\rho(\operatorname{dom}(\varphi)) > 0$ and $\varphi(n) = A(n)$ for $n \in \operatorname{dom}(\varphi)$.
- **2 Intuition.** Like bi-immunity, except that only those φ 's that make "many" predictions are required to make mistakes.
- **Intuition.** There is no Turing machine generating non-negligible positive or negative information about *A*.

In the Turing degrees

- Theorem (Jockusch), restated. There exists a non-computable Turing degree such that none of its elements are bi-immune.
- Question (Downey, Jockusch, Schupp). Does there exist a non-computable Turing degree such that none of its elements are absolutely undecidable?

In the Turing degrees

- **Theorem (Jockusch), restated.** There exists a non-computable Turing degree such that none of its elements are bi-immune.
- Question (Downey, Jockusch, Schupp). Does there exist a non-computable Turing degree such that none of its elements are absolutely undecidable?
- We will show that the answer is "no" bi-immunity and absolute undecidability behave differently in this regard.

3

The main result

Main result

- **Theorem.** There exists a *tt*-functional Γ such that for non-computable A, Γ^A is absolutely undecidable and Γ^A ≡_T A.
- **2 Corollary.** There is an absolutely undecidable set in every non-computable Turing degree.

General proof idea

- **1** The functional Γ will code any set A in way that is so redundant, that from any non-negligible fraction of that code Γ^A the whole set A can be recovered.
- **2** Assume for contradiction that Γ^A is *not* absolutely undecidable. Then there is a φ as above.
- Since φ is partial computable, we could then use φ to generate such a non-negligible fraction, and then recover A.
- 4 Then *A* would be computable, contradiction.
- **5** So Γ^A must have been absolutely undecidable.

Walsh-Hadamard codes

- **1** For $x, y \in \{0, 1\}^n$ let $x \odot y = \sum_{i=1}^n x_i y_i \mod 2$.
- **2** Then the Walsh-Hadamard code of a word $x \in \{0, 1\}^n$ is

$$WH(x) := x \odot 0^n \circ x \odot 0^{n-1} 1 \circ x \odot 0^{n-2} 10 \circ \dots \circ x \odot 1^n,$$

where o denotes concatenation.

■ Hamming distance. Define $d(x,y) := \#\{i \mid x(i) \neq y(i)\}/n$. The distance of a coding scheme E is $\min\{d(E(x), E(y)) \mid x \neq y\}$.

(objects in drawing are higher-dimensional than they appear)

■ Hamming distance. Define $d(x,y) := \#\{i \mid x(i) \neq y(i)\}/n$. The *distance* of a coding scheme *E* is $\min\{d(E(x), E(y)) \mid x \neq y\}$.

(objects in drawing are higher-dimensional than they appear)

- Hamming distance. Define $d(x,y) := \#\{i \mid x(i) \neq y(i)\}/n$. The *distance* of a coding scheme *E* is $\min\{d(E(x), E(y)) \mid x \neq y\}$.
- **2 Lemma.** WH is an error correcting code of distance 1/2.

(objects in drawing are higher-dimensional than they appear)

- Hamming distance. Define $d(x,y) := \#\{i \mid x(i) \neq y(i)\}/n$. The *distance* of a coding scheme *E* is $\min\{d(E(x), E(y)) \mid x \neq y\}$.
- **2 Lemma.** WH is an error correcting code of distance 1/2.

(objects in drawing are higher-dimensional than they appear)

- Hamming distance. Define $d(x,y) := \#\{i \mid x(i) \neq y(i)\}/n$. The *distance* of a coding scheme *E* is $\min\{d(E(x), E(y)) \mid x \neq y\}$.
- **2 Lemma.** WH is an error correcting code of distance 1/2.

(objects in drawing are higher-dimensional than they appear)

- Hamming distance. Define $d(x,y) := \#\{i \mid x(i) \neq y(i)\}/n$. The distance of a coding scheme E is $\min\{d(E(x), E(y)) \mid x \neq y\}$.
- **2 Lemma.** WH is an error correcting code of distance 1/2.

(objects in drawing are higher-dimensional than they appear)

- **Hamming distance.** Define $d(x,y) := \#\{i \mid x(i) \neq y(i)\}/n$. The *distance* of a coding scheme *E* is $\min\{d(E(x), E(y)) \mid x \neq y\}$.
- **2 Lemma.** WH is an error correcting code of distance 1/2.
- **3 Johnson bound.** If *E* is an error correcting code of distance larger or equal to 1/2, then for all *x* and $\delta \ge 0$, there are at most $l = 1/2\delta^2$ elements $\gamma_1, \ldots, \gamma_l$ with $d(x, E(\gamma_i)) \le 1/2 \delta$ for all *i*.

A subtlety

- We are not quite in the setting of error-correcting codes.
- 2 In that field, usually a code gets damaged by switching bits.
- If Here, bits are *missing*; say, a $1-2\delta$ fraction of them.
- That is, the 2δ fraction of non-missing bits is correct.
- **5** Then the error-correcting code approach can still be used:
 - Fill the empty positions with 0's to get a codeword z_0 and with 1's to get a codeword z_1 .
 - One of them must be correct on $1/2 + \delta$ of its bits.
 - Use list decoding on both z_0 and z_1 .
 - Get two lists of size $l = 1/2\delta^2$.
 - Merge them.

The coding procedure

- **1** For input A, we construct Γ^A block by block.
- Namely, $\Gamma^A = WH(A \upharpoonright 1) \circ WH(A \upharpoonright 2) \circ WH(A \upharpoonright 3)...$

- Now assume we know a positive upper density fraction 2δ of the bits of Γ^A . W.l.o.g. choose $\delta \in \mathbb{Q}$. Let $I_n = \{2^n, \dots, 2^{n+1} 1\}$.
- **2 Lemma.** If a set $D \subseteq \mathbb{N}$ has $\rho(D) \ge 2\delta > 0$, then for infinitely many n, the upper density of D inside I_n is at least δ .
- 3 Since *D* is c.e. and $\delta \in \mathbb{Q}$, the set of such *n* is c.e. and therefore contains a computable set $\{n_0 < n_1 < n_2 < \ldots\}$.
- **4** Let Γ_0^A be a version of Γ^A where missing bits are filled with 0's. Let Γ_1^A be a version of Γ^A where missing bits are filled with 1's.
- **6** Apply list decoding to these two corrupted codewords.
- Merge the resulting lists, as discussed above.

- \blacksquare We get a computable tree whose paths are candidates for A.
- 2 Johnson bound \Rightarrow width of tree is bounded by $2l = 1/\delta^2$.

- \blacksquare We get a computable tree whose paths are candidates for A.
- 2 Johnson bound \Rightarrow width of tree is bounded by $2l = 1/\delta^2$.

- \blacksquare We get a computable tree whose paths are candidates for A.
- 2 Johnson bound \Rightarrow width of tree is bounded by $2l = 1/\delta^2$.

- \blacksquare We get a computable tree whose paths are candidates for A.
- 2 Johnson bound \Rightarrow width of tree is bounded by $2l = 1/\delta^2$.
- If τ Hardcode a node τ where τ becomes isolated in that tree.

Non-uniformity

- **1 Theorem.** There is no *tt*-functional Γ and finite set of Turing functionals $\Psi_1, \Psi_2, ..., \Psi_k$ with the property that for any A, for any partial function $\varphi : \mathbb{N} \to \{0,1\}$ with $\rho(\text{dom}(\varphi)) \ge 1/3$, if Γ^A extends φ , then $A \in \{\Psi_i(\varphi) \mid i \le k\}$.
- 2 That is: There is no coding that will work with a finite number of decoding procedures. In this sense our main result is optimal; the "infinite non-uniformity" for decoding is necessary.

Sublinear density

- 1 Let $x_D: n \mapsto |D \cap \{0, \dots, n-1\}|$.
- **2 Theorem.** There is a non-computable set X such that for all $Y \leq_T X$, and all computable functions $h \in o(n)$, there exists a partial computable function φ such that
 - $Y(n) = \varphi(n)$ for all $n \in \text{dom}(\varphi)$, and
 - $\mathbf{z}_{\mathrm{dom}(\varphi)} \notin o(h).$
- **Intuition.** There is a non-computable Turing degree such that for every set in it there is a correct prediction procedure making *sub*linearly, but arbitrarily close to linearly, many predictions.
- **1** That is: We really need positive density for the main result.

Thank you for your attention.

Journal of Symbolic Logic, Volume 78, Issue 4, 2013