
hoelzl.fr 1/25

Absolutely undecidable sets

Rupert Hölzl
Universität der Bundeswehr München

Joint work with Laurent Bienvenu and Adam R. Day

hoelzl.fr 2/25

Reminder: Turing degrees1

hoelzl.fr 3/25

Turing machines

1 0 1 0 1 1 1 0 0

→←
q

0

1 Turing machines are a theoretical computation model that can
simulate any other classical computation model.

2 Such a machine is in one of finitely many internal states q.
3 It has reading and writing heads that move around on one or

more infinite tapes and read and write symbols.
4 Its internal state and last read symbol determine its next actions:

the symbol to write in the current cell and
the next movement.

5 The instructions for this are given as a finite list, a programme.

hoelzl.fr 3/25

Turing machines

1 0 1 0 1 1 1 0 0

→←

q

0

1 Turing machines are a theoretical computation model that can
simulate any other classical computation model.

2 Such a machine is in one of finitely many internal states q.

3 It has reading and writing heads that move around on one or
more infinite tapes and read and write symbols.

4 Its internal state and last read symbol determine its next actions:

the symbol to write in the current cell and
the next movement.

5 The instructions for this are given as a finite list, a programme.

hoelzl.fr 3/25

Turing machines

1 0 1 0 1 1 1 0 0

→←

q

0

1 Turing machines are a theoretical computation model that can
simulate any other classical computation model.

2 Such a machine is in one of finitely many internal states q.
3 It has reading and writing heads that move around on one or

more infinite tapes and read and write symbols.

4 Its internal state and last read symbol determine its next actions:

the symbol to write in the current cell and
the next movement.

5 The instructions for this are given as a finite list, a programme.

hoelzl.fr 3/25

Turing machines

1 0 1 0 1 1 1 0 0

→←

q

0

1 Turing machines are a theoretical computation model that can
simulate any other classical computation model.

2 Such a machine is in one of finitely many internal states q.
3 It has reading and writing heads that move around on one or

more infinite tapes and read and write symbols.
4 Its internal state and last read symbol determine its next actions:

the symbol to write in the current cell and
the next movement.

5 The instructions for this are given as a finite list, a programme.

hoelzl.fr 3/25

Turing machines

1 0 1 0 1 1 1 0 0

→←

q

0

1 Turing machines are a theoretical computation model that can
simulate any other classical computation model.

2 Such a machine is in one of finitely many internal states q.
3 It has reading and writing heads that move around on one or

more infinite tapes and read and write symbols.
4 Its internal state and last read symbol determine its next actions:

the symbol to write in the current cell and

the next movement.
5 The instructions for this are given as a finite list, a programme.

hoelzl.fr 3/25

Turing machines

1 0 1 0 1 1 1 0 0

→←
q

0

1 Turing machines are a theoretical computation model that can
simulate any other classical computation model.

2 Such a machine is in one of finitely many internal states q.
3 It has reading and writing heads that move around on one or

more infinite tapes and read and write symbols.
4 Its internal state and last read symbol determine its next actions:

the symbol to write in the current cell and
the next movement.

5 The instructions for this are given as a finite list, a programme.

hoelzl.fr 3/25

Turing machines

1 0 1 0 1 1 1 0 0

→←
q

0

1 Turing machines are a theoretical computation model that can
simulate any other classical computation model.

2 Such a machine is in one of finitely many internal states q.
3 It has reading and writing heads that move around on one or

more infinite tapes and read and write symbols.
4 Its internal state and last read symbol determine its next actions:

the symbol to write in the current cell and
the next movement.

5 The instructions for this are given as a finite list, a programme.

hoelzl.fr 4/25

Turing machine computations

1 Turing machines can compute sets:

Designate one internal state as accepting, and one as rejecting.
Definition. A set A⊆N is computably enumerable if there is a
Turing machine M that terminates in the accepting state iff n ∈A.
Definition. A set A⊆N is computable if there is a Turing
machine M that terminates in the accepting state if n ∈A and
in the rejecting state otherwise.

2 Turing machines can compute functions:

Designate one tape as input tape and one as output tape.
Initially, the input tape contains a binary word σ as input.
If the machine terminates after it has produced a binary word τ
on the output tape, then we write M(σ) = τ.
Definition. A partial function f is partial computable if there is a
Turing machine M with M(σ) = f (σ) for all σ ∈ dom(f).
Via binary encoding we can have computable f : N→N.

hoelzl.fr 5/25

Turing functionals

1 Intuition. A Turing functional computably converts one infinite
binary sequence into another.

2 Definition. A Turing functional Φ : 2ω→ 2ω is a (partial)
function for which there exists a Turing machine M such that

σ ,σ ′ ∈ dom(M) ∧ σ � σ ′ =⇒ M(σ)�M(σ ′)

For A ∈ 2ω where |M(A � n)| →∞ , let Φ(A) = lim
n→∞

M(A � n).
Otherwise Φ(A) is undefined.

3 We write ΦA for Φ(A).
4 In other words: A Turing functional is a function transforming

infinite sequences into infinite sequences. It is induced by an
underlying Turing machine that operates on finite sequences.

hoelzl.fr 6/25

Turing degrees

1 Definition. A is Turing reducible to B, written as A≤T B, if
there is a Turing functional Φ such that A= ΦB.

2 Definition. A is Turing equivalent to B, written as A≡T B, if
both A≤T B and B≤T A.

3 Definition. The Turing degrees are the equivalence classes
induced by ≡T .

4 Intuition. All sets in a Turing degree contain the same
information, but represented differently. The representations
can be transformed into each other using a Turing functional.

5 Definition. A tt-functional is a total Turing functional.

hoelzl.fr 7/25

Motivation2

hoelzl.fr 8/25

Bi-immunity

1 Definition. A set A is bi-immune if neither A nor its
complement contain an infinite computably enumerable set.

hoelzl.fr 8/25

Bi-immunity

1 Definition. A set A is bi-immune if neither A nor its
complement contain an infinite computably enumerable set.

hoelzl.fr 8/25

Bi-immunity

1 Definition. A set A is bi-immune if neither A nor its
complement contain an infinite computably enumerable set.

hoelzl.fr 8/25

Bi-immunity

1 Definition. A set A is bi-immune if neither A nor its
complement contain an infinite computably enumerable set.

hoelzl.fr 8/25

Bi-immunity

1 Definition. A set A is bi-immune if neither A nor its
complement contain an infinite computably enumerable set.

hoelzl.fr 9/25

Bi-immunity

1 1 1010 0A

ϕ

10 n

00 11 0

1 Another way of seeing bi-immunity is to say that a partial
computable function ϕ that “predicts” A(n) for infinitely many n
must make a mistake somewhere.

2 Theorem (Jockusch). There exists a non-computable set A such
that there is no bi-immune set B that is Turing-equivalent to A.

3 Intuition. Some information just cannot be represented in a
bi-immune way.

hoelzl.fr 9/25

Bi-immunity

1 1 1010 0A

ϕ

10 n

0

0 11 0

1 Another way of seeing bi-immunity is to say that a partial
computable function ϕ that “predicts” A(n) for infinitely many n
must make a mistake somewhere.

2 Theorem (Jockusch). There exists a non-computable set A such
that there is no bi-immune set B that is Turing-equivalent to A.

3 Intuition. Some information just cannot be represented in a
bi-immune way.

hoelzl.fr 9/25

Bi-immunity

1 1 1010 0A

ϕ

10 n

00

11 0

1 Another way of seeing bi-immunity is to say that a partial
computable function ϕ that “predicts” A(n) for infinitely many n
must make a mistake somewhere.

2 Theorem (Jockusch). There exists a non-computable set A such
that there is no bi-immune set B that is Turing-equivalent to A.

3 Intuition. Some information just cannot be represented in a
bi-immune way.

hoelzl.fr 9/25

Bi-immunity

1 1 1010 0A

ϕ

10 n

00 1

1 0

1 Another way of seeing bi-immunity is to say that a partial
computable function ϕ that “predicts” A(n) for infinitely many n
must make a mistake somewhere.

2 Theorem (Jockusch). There exists a non-computable set A such
that there is no bi-immune set B that is Turing-equivalent to A.

3 Intuition. Some information just cannot be represented in a
bi-immune way.

hoelzl.fr 9/25

Bi-immunity

1 1 1010 0A

ϕ

10 n

00 11

0

1 Another way of seeing bi-immunity is to say that a partial
computable function ϕ that “predicts” A(n) for infinitely many n
must make a mistake somewhere.

2 Theorem (Jockusch). There exists a non-computable set A such
that there is no bi-immune set B that is Turing-equivalent to A.

3 Intuition. Some information just cannot be represented in a
bi-immune way.

hoelzl.fr 9/25

Bi-immunity

1 1 1010 0A

ϕ

10 n

00 11 0

1 Another way of seeing bi-immunity is to say that a partial
computable function ϕ that “predicts” A(n) for infinitely many n
must make a mistake somewhere.

2 Theorem (Jockusch). There exists a non-computable set A such
that there is no bi-immune set B that is Turing-equivalent to A.

3 Intuition. Some information just cannot be represented in a
bi-immune way.

hoelzl.fr 9/25

Bi-immunity

1 1 1010 0A

ϕ

10 n

00 11 0

1 Another way of seeing bi-immunity is to say that a partial
computable function ϕ that “predicts” A(n) for infinitely many n
must make a mistake somewhere.

2 Theorem (Jockusch). There exists a non-computable set A such
that there is no bi-immune set B that is Turing-equivalent to A.

3 Intuition. Some information just cannot be represented in a
bi-immune way.

hoelzl.fr 10/25

Weakening bi-immunity

1 The notion of bi-immunity can be weakened by replacing
“ϕ’s that make infinitely many predictions” by a smaller class.

2 Definition. The (upper) density of D⊆N is

ρ(D) := limsup
n→∞

|D∩{0, . . .n− 1}|
n

.

hoelzl.fr 11/25

Absolute undecidability

1 1 1010 0A

ϕ

10 n

many predictions in the limit, that is, ρ(dom(ϕ))> 0.

00 11 0

1 Definition (Myasnikov, Rybalov). A is absolutely undecidable if
there is no partial computable function ϕ : N→{0,1} with
ρ(dom(ϕ))> 0 and ϕ(n) =A(n) for n ∈ dom(ϕ).

2 Intuition. Like bi-immunity, except that only those ϕ’s that
make “many” predictions are required to make mistakes.

3 Intuition. There is no Turing machine generating
non-negligible positive or negative information about A.

hoelzl.fr 11/25

Absolute undecidability

1 1 1010 0A

ϕ

10 n

many predictions in the limit, that is, ρ(dom(ϕ))> 0.

0

0 11 0

1 Definition (Myasnikov, Rybalov). A is absolutely undecidable if
there is no partial computable function ϕ : N→{0,1} with
ρ(dom(ϕ))> 0 and ϕ(n) =A(n) for n ∈ dom(ϕ).

2 Intuition. Like bi-immunity, except that only those ϕ’s that
make “many” predictions are required to make mistakes.

3 Intuition. There is no Turing machine generating
non-negligible positive or negative information about A.

hoelzl.fr 11/25

Absolute undecidability

1 1 1010 0A

ϕ

10 n

many predictions in the limit, that is, ρ(dom(ϕ))> 0.

00

11 0

1 Definition (Myasnikov, Rybalov). A is absolutely undecidable if
there is no partial computable function ϕ : N→{0,1} with
ρ(dom(ϕ))> 0 and ϕ(n) =A(n) for n ∈ dom(ϕ).

2 Intuition. Like bi-immunity, except that only those ϕ’s that
make “many” predictions are required to make mistakes.

3 Intuition. There is no Turing machine generating
non-negligible positive or negative information about A.

hoelzl.fr 11/25

Absolute undecidability

1 1 1010 0A

ϕ

10 n

many predictions in the limit, that is, ρ(dom(ϕ))> 0.

00 1

1 0

1 Definition (Myasnikov, Rybalov). A is absolutely undecidable if
there is no partial computable function ϕ : N→{0,1} with
ρ(dom(ϕ))> 0 and ϕ(n) =A(n) for n ∈ dom(ϕ).

2 Intuition. Like bi-immunity, except that only those ϕ’s that
make “many” predictions are required to make mistakes.

3 Intuition. There is no Turing machine generating
non-negligible positive or negative information about A.

hoelzl.fr 11/25

Absolute undecidability

1 1 1010 0A

ϕ

10 n

many predictions in the limit, that is, ρ(dom(ϕ))> 0.

00 11

0

1 Definition (Myasnikov, Rybalov). A is absolutely undecidable if
there is no partial computable function ϕ : N→{0,1} with
ρ(dom(ϕ))> 0 and ϕ(n) =A(n) for n ∈ dom(ϕ).

2 Intuition. Like bi-immunity, except that only those ϕ’s that
make “many” predictions are required to make mistakes.

3 Intuition. There is no Turing machine generating
non-negligible positive or negative information about A.

hoelzl.fr 11/25

Absolute undecidability

1 1 1010 0A

ϕ

10 n

many predictions in the limit, that is, ρ(dom(ϕ))> 0.

00 11 0

1 Definition (Myasnikov, Rybalov). A is absolutely undecidable if
there is no partial computable function ϕ : N→{0,1} with
ρ(dom(ϕ))> 0 and ϕ(n) =A(n) for n ∈ dom(ϕ).

2 Intuition. Like bi-immunity, except that only those ϕ’s that
make “many” predictions are required to make mistakes.

3 Intuition. There is no Turing machine generating
non-negligible positive or negative information about A.

hoelzl.fr 11/25

Absolute undecidability

1 1 1010 0A

ϕ

10 n

many predictions in the limit, that is, ρ(dom(ϕ))> 0.

00 11 0

1 Definition (Myasnikov, Rybalov). A is absolutely undecidable if
there is no partial computable function ϕ : N→{0,1} with
ρ(dom(ϕ))> 0 and ϕ(n) =A(n) for n ∈ dom(ϕ).

2 Intuition. Like bi-immunity, except that only those ϕ’s that
make “many” predictions are required to make mistakes.

3 Intuition. There is no Turing machine generating
non-negligible positive or negative information about A.

hoelzl.fr 11/25

Absolute undecidability

1 1 1010 0A

ϕ

10 n

many predictions in the limit, that is, ρ(dom(ϕ))> 0.

00 11 0

1 Definition (Myasnikov, Rybalov). A is absolutely undecidable if
there is no partial computable function ϕ : N→{0,1} with
ρ(dom(ϕ))> 0 and ϕ(n) =A(n) for n ∈ dom(ϕ).

2 Intuition. Like bi-immunity, except that only those ϕ’s that
make “many” predictions are required to make mistakes.

3 Intuition. There is no Turing machine generating
non-negligible positive or negative information about A.

hoelzl.fr 11/25

Absolute undecidability

1 1 1010 0A

ϕ

10 n

many predictions in the limit, that is, ρ(dom(ϕ))> 0.

00 11 0

1 Definition (Myasnikov, Rybalov). A is absolutely undecidable if
there is no partial computable function ϕ : N→{0,1} with
ρ(dom(ϕ))> 0 and ϕ(n) =A(n) for n ∈ dom(ϕ).

2 Intuition. Like bi-immunity, except that only those ϕ’s that
make “many” predictions are required to make mistakes.

3 Intuition. There is no Turing machine generating
non-negligible positive or negative information about A.

hoelzl.fr 12/25

In the Turing degrees

1 Theorem (Jockusch), restated. There exists a non-computable
Turing degree such that none of its elements are bi-immune.

2 Question (Downey, Jockusch, Schupp). Does there exist a
non-computable Turing degree such that none of its elements are
absolutely undecidable?

3 We will show that the answer is “no” — bi-immunity and
absolute undecidability behave differently in this regard.

hoelzl.fr 12/25

In the Turing degrees

1 Theorem (Jockusch), restated. There exists a non-computable
Turing degree such that none of its elements are bi-immune.

2 Question (Downey, Jockusch, Schupp). Does there exist a
non-computable Turing degree such that none of its elements are
absolutely undecidable?

3 We will show that the answer is “no” — bi-immunity and
absolute undecidability behave differently in this regard.

hoelzl.fr 13/25

The main result3

hoelzl.fr 14/25

Main result

1 Theorem. There exists a tt-functional Γ such that for
non-computable A, ΓA is absolutely undecidable and ΓA ≡T A.

2 Corollary. There is an absolutely undecidable set in every
non-computable Turing degree.

hoelzl.fr 15/25

General proof idea

1 The functional Γ will code any set A in way that is so redundant,
that from any non-negligible fraction of that code ΓA the whole
set A can be recovered.

2 Assume for contradiction that ΓA is not absolutely undecidable.
Then there is a ϕ as above.

3 Since ϕ is partial computable, we could then use ϕ to generate
such a non-negligible fraction, and then recover A.

4 Then A would be computable, contradiction.
5 So ΓA must have been absolutely undecidable.

hoelzl.fr 16/25

Walsh-Hadamard codes

1 For x,y ∈ {0,1}n let x� y=
∑n

i=1 xiyi mod 2.
2 Then the Walsh-Hadamard code of a word x ∈ {0,1}n is

WH(x) := x� 0n ◦ x� 0n−11 ◦ x� 0n−210 ◦ . . . ◦ x� 1n,

where ◦ denotes concatenation.

hoelzl.fr 17/25

List decoding

1/4

1/2−δ

(objects in drawing are higher-dimensional than they appear)

1 Hamming distance. Define d(x,y) := #{i | x(i) 6= y(i)}/n. The
distance of a coding scheme E is min{d(E(x),E(y)) | x 6= y}.

2 Lemma. WH is an error correcting code of distance 1/2.
3 Johnson bound. If E is an error correcting code of distance

larger or equal to 1/2, then for all x and δ ≥ 0, there are at most
l= 1/2δ2 elements y1, . . . ,yl with d(x,E(yi))≤ 1/2−δ for all i.

hoelzl.fr 17/25

List decoding

1/4

1/2−δ

(objects in drawing are higher-dimensional than they appear)

1 Hamming distance. Define d(x,y) := #{i | x(i) 6= y(i)}/n. The
distance of a coding scheme E is min{d(E(x),E(y)) | x 6= y}.

2 Lemma. WH is an error correcting code of distance 1/2.
3 Johnson bound. If E is an error correcting code of distance

larger or equal to 1/2, then for all x and δ ≥ 0, there are at most
l= 1/2δ2 elements y1, . . . ,yl with d(x,E(yi))≤ 1/2−δ for all i.

hoelzl.fr 17/25

List decoding

1/4

1/2−δ

(objects in drawing are higher-dimensional than they appear)

1 Hamming distance. Define d(x,y) := #{i | x(i) 6= y(i)}/n. The
distance of a coding scheme E is min{d(E(x),E(y)) | x 6= y}.

2 Lemma. WH is an error correcting code of distance 1/2.

3 Johnson bound. If E is an error correcting code of distance
larger or equal to 1/2, then for all x and δ ≥ 0, there are at most
l= 1/2δ2 elements y1, . . . ,yl with d(x,E(yi))≤ 1/2−δ for all i.

hoelzl.fr 17/25

List decoding

1/4

1/2−δ

(objects in drawing are higher-dimensional than they appear)

1 Hamming distance. Define d(x,y) := #{i | x(i) 6= y(i)}/n. The
distance of a coding scheme E is min{d(E(x),E(y)) | x 6= y}.

2 Lemma. WH is an error correcting code of distance 1/2.

3 Johnson bound. If E is an error correcting code of distance
larger or equal to 1/2, then for all x and δ ≥ 0, there are at most
l= 1/2δ2 elements y1, . . . ,yl with d(x,E(yi))≤ 1/2−δ for all i.

hoelzl.fr 17/25

List decoding

1/4

1/2−δ

(objects in drawing are higher-dimensional than they appear)

1 Hamming distance. Define d(x,y) := #{i | x(i) 6= y(i)}/n. The
distance of a coding scheme E is min{d(E(x),E(y)) | x 6= y}.

2 Lemma. WH is an error correcting code of distance 1/2.

3 Johnson bound. If E is an error correcting code of distance
larger or equal to 1/2, then for all x and δ ≥ 0, there are at most
l= 1/2δ2 elements y1, . . . ,yl with d(x,E(yi))≤ 1/2−δ for all i.

hoelzl.fr 17/25

List decoding

1/4

1/2−δ

(objects in drawing are higher-dimensional than they appear)

1 Hamming distance. Define d(x,y) := #{i | x(i) 6= y(i)}/n. The
distance of a coding scheme E is min{d(E(x),E(y)) | x 6= y}.

2 Lemma. WH is an error correcting code of distance 1/2.

3 Johnson bound. If E is an error correcting code of distance
larger or equal to 1/2, then for all x and δ ≥ 0, there are at most
l= 1/2δ2 elements y1, . . . ,yl with d(x,E(yi))≤ 1/2−δ for all i.

hoelzl.fr 17/25

List decoding

1/4

1/2−δ

(objects in drawing are higher-dimensional than they appear)

1 Hamming distance. Define d(x,y) := #{i | x(i) 6= y(i)}/n. The
distance of a coding scheme E is min{d(E(x),E(y)) | x 6= y}.

2 Lemma. WH is an error correcting code of distance 1/2.
3 Johnson bound. If E is an error correcting code of distance

larger or equal to 1/2, then for all x and δ ≥ 0, there are at most
l= 1/2δ2 elements y1, . . . ,yl with d(x,E(yi))≤ 1/2−δ for all i.

hoelzl.fr 18/25

A subtlety

1 We are not quite in the setting of error-correcting codes.
2 In that field, usually a code gets damaged by switching bits.
3 Here, bits are missing; say, a 1− 2δ fraction of them.
4 That is, the 2δ fraction of non-missing bits is correct.
5 Then the error-correcting code approach can still be used:

Fill the empty positions with 0’s to get a codeword z0
and with 1’s to get a codeword z1.

One of them must be correct on 1/2+δ of its bits.
Use list decoding on both z0 and z1.
Get two lists of size l= 1/2δ2.
Merge them.

hoelzl.fr 19/25

The coding procedure

1 For input A, we construct ΓA block by block.
2 An initial segment A � n is coded by a string of length 2n.
3 Namely, ΓA =WH(A � 1) ◦ WH(A � 2) ◦ WH(A � 3) . . .

hoelzl.fr 20/25

The recovery procedure

1 Now assume we know a positive upper density fraction 2δ of the
bits of ΓA. W.l.o.g. choose δ ∈Q. Let In = {2n, . . . , 2n+1− 1}.

2 Lemma. If a set D⊆N has ρ(D)≥ 2δ > 0, then for infinitely
many n, the upper density of D inside In is at least δ.

3 Since D is c.e. and δ ∈Q, the set of such n is c.e. and therefore
contains a computable set {n0 < n1 < n2 < . . .}.

4 Let ΓA
0 be a version of ΓA where missing bits are filled with 0’s.

Let ΓA
1 be a version of ΓA where missing bits are filled with 1’s.

5 For all i, let σ0
ni

:= ΓA
0 � Ini

and σ1
ni

:= ΓA
1 � Ini

.
6 Apply list decoding to these two corrupted codewords.
7 Merge the resulting lists, as discussed above.

hoelzl.fr 21/25

The recovery procedure

n0

n1
n2

n3
n4

λ

2ω

A

τ

1 We get a computable tree whose paths are candidates for A.
2 Johnson bound⇒ width of tree is bounded by 2l= 1/δ2.

3 Hardcode a node τ where A becomes isolated in that tree.

hoelzl.fr 21/25

The recovery procedure

n0

n1
n2

n3
n4

λ

2ω

A

τ

1 We get a computable tree whose paths are candidates for A.
2 Johnson bound⇒ width of tree is bounded by 2l= 1/δ2.

3 Hardcode a node τ where A becomes isolated in that tree.

hoelzl.fr 21/25

The recovery procedure

n0

n1
n2

n3
n4

λ

2ω

A

τ

1 We get a computable tree whose paths are candidates for A.
2 Johnson bound⇒ width of tree is bounded by 2l= 1/δ2.

3 Hardcode a node τ where A becomes isolated in that tree.

hoelzl.fr 21/25

The recovery procedure

n0

n1
n2

n3
n4

λ

2ω

A

τ

1 We get a computable tree whose paths are candidates for A.
2 Johnson bound⇒ width of tree is bounded by 2l= 1/δ2.
3 Hardcode a node τ where A becomes isolated in that tree.

hoelzl.fr 22/25

The limits4

hoelzl.fr 23/25

Non-uniformity

1 Theorem. There is no tt-functional Γ and finite set of Turing
functionals Ψ1,Ψ2, . . . ,Ψk with the property that for any A, for
any partial function ϕ : N→{0,1} with ρ(dom(ϕ))≥ 1/3, if
ΓA extends ϕ, then A ∈ {Ψi(ϕ) | i≤ k}.

2 That is: There is no coding that will work with a finite number
of decoding procedures. In this sense our main result is optimal;
the “infinite non-uniformity” for decoding is necessary.

hoelzl.fr 24/25

Sublinear density

1 Let κD : n 7→ |D∩{0, . . . ,n− 1}|.
2 Theorem. There is a non-computable set X such that for all

Y ≤T X, and all computable functions h ∈ o(n), there exists a
partial computable function ϕ such that

Y (n) = ϕ(n) for all n ∈ dom(ϕ), and
κdom(ϕ) 6∈ o(h).

3 Intuition. There is a non-computable Turing degree such that
for every set in it there is a correct prediction procedure making
sublinearly, but arbitrarily close to linearly, many predictions.

4 That is: We really need positive density for the main result.

hoelzl.fr 25/25

Thank you for your attention.
Journal of Symbolic Logic, Volume 78, Issue 4, 2013

	Title
	Title

	Reminder: Turing degrees
	Motivation
	The main result
	The limits

